• <track id="lqepq"><em id="lqepq"></em></track>

  • 
    

      1. 
        

            <optgroup id="lqepq"><li id="lqepq"></li></optgroup>
            <optgroup id="lqepq"></optgroup>

          1. <cite id="lqepq"></cite>

            1. <optgroup id="lqepq"><li id="lqepq"></li></optgroup>
            2. <acronym id="lqepq"></acronym>
              1. 【24h】

                Generative Adversarial Networks for Noise Reduction in Low-Dose CT

                機譯:用于小劑量CT的降噪的生成對抗網絡

                獲取原文
                獲取原文并翻譯 | 示例

                摘要

                Noise is inherent to low-dose CT acquisition. We propose to train a convolutional neural network (CNN) jointly with an adversarial CNN to estimate routine-dose CT images from low-dose CT images and hence reduce noise. A generator CNN was trained to transform low-dose CT images into routine-dose CT images using voxelwise loss minimization. An adversarial discriminator CNN was simultaneously trained to distinguish the output of the generator from routine-dose CT images. The performance of this discriminator was used as an adversarial loss for the generator. Experiments were performed using CT images of an anthropomorphic phantom containing calcium inserts, as well as patient non-contrast-enhanced cardiac CT images. The phantom and patients were scanned at 20% and 100% routine clinical dose. Three training strategies were compared: the first used only voxelwise loss, the second combined voxelwise loss and adversarial loss, and the third used only adversarial loss. The results showed that training with only voxelwise loss resulted in the highest peak signal-to-noise ratio with respect to reference routine-dose images. However, CNNs trained with adversarial loss captured image statistics of routine-dose images better. Noise reduction improved quantification of low-density calcified inserts in phantom CT images and allowed coronary calcium scoring in low-dose patient CT images with high noise levels. Testing took less than 10 s per CT volume. CNN-based low-dose CT noise reduction in the image domain is feasible. Training with an adversarial network improves the CNNs ability to generate images with an appearance similar to that of reference routine-dose CT images.
                機譯:噪聲是低劑量CT采集所固有的。我們建議與對抗性CNN一起訓練卷積神經網絡(CNN),以從低劑量CT圖像估計常規劑量CT圖像,從而降低噪聲。訓練了CNN生成器,以使用三維像素損失最小化將低劑量CT圖像轉換為常規劑量CT圖像。同時訓練了一個對抗鑒別器CNN,以將發生器的輸出與常規劑量CT圖像區分開。該鑒別器的性能被用作發電機的對抗性損失。使用包含鈣插入物的擬人化體模的CT圖像以及患者的非增強性心臟CT圖像進行實驗。以20%和100%的常規臨床劑量對體模和患者進行掃描。比較了三種訓練策略:第一種僅使用體素丟失,第二種組合體素損失和對抗性損失,第三種僅使用對抗性損失。結果表明,相對于參考常規劑量圖像,僅以體素損失進行訓練會導致最高峰值信噪比。但是,經過對抗損失訓練的CNN可以更好地捕獲常規劑量圖像的圖像統計信息。降噪改善了幻影CT圖像中低密度鈣化插入物的定量,并允許在高噪聲水平的低劑量患者CT圖像中對冠狀動脈鈣化評分。每個CT體積的測試時間少于10秒。在圖像域中基于CNN的低劑量CT降噪是可行的。對抗網絡的訓練提高了CNN生成具有類似于參考常規劑量CT圖像外觀的圖像的能力。

                著錄項

                相似文獻

                • 外文文獻
                • 中文文獻
                • 專利
                站內服務
                • 寫作輔導
                • 期刊發表
                獲取原文

                客服郵箱:kefu@zhangqiaokeyan.com

                京公網安備:11010802029741號 ICP備案號:京ICP備15016152號-6 六維聯合信息科技 (北京) 有限公司?版權所有
                • 客服微信

                • 服務號

                古代妓院做爰片120分钟_婷婷五月综合缴情在线视频_国产在线视频一区二区天美蜜桃_日韩欧精品无码视频无删节 无码人妻一区二区久久_国产成人精品亚洲线观看_欧美熟妇呻吟猛交XX性_东北露脸46熟妇ⅩⅩXX 国产FREEXXXX性播放麻豆_久久精品亚洲乱码伦伦中文_日日摸天天添天天添无码国产_丰满又大又圆美乳 在教室里把跳D开到最大_被征服到高潮的娇妻精品小说_无码少妇一区二区三区浪潮AV_米地被老头添的好爽 妇荡岳丰满少妇岳_国产精品久久久久久无码专区_人妻无码中文字幕免费视频蜜桃_嗯啊小SAO货奶头好硬男男 疯狂做受XXXX高潮中国_艳阳门无删照片1400还有视频_9久久人妻无码精品系列_国产麻传媒精品国产AV 国产精品亚洲专区无码唯爱网_国语对白国产成人AⅤ片_熟女俱乐部五十路六十路AV_亚洲R成人AV久久人人爽