• <track id="lqepq"><em id="lqepq"></em></track>

  • 
    

      1. 
        

            <optgroup id="lqepq"><li id="lqepq"></li></optgroup>
            <optgroup id="lqepq"></optgroup>

          1. <cite id="lqepq"></cite>

            1. <optgroup id="lqepq"><li id="lqepq"></li></optgroup>
            2. <acronym id="lqepq"></acronym>
              1. 【24h】

                Hybrid Pre-Log and Post-Log Image Reconstruction for Computed Tomography

                機譯:計算機斷層掃描的混合對數和對數后圖像重建

                獲取原文
                獲取原文并翻譯 | 示例

                摘要

                Tomographic image reconstruction for low-dose computed tomography (CT) is increasingly challenging as dose continues to reduce in clinical applications. Pre-log domain methods and post-log domain methods have been proposed individually and each method has its own disadvantage. While having the potential to improve image quality for low-dose data by using an accurate imaging model, pre-log domain methods suffer slow convergence in practice due to the nonlinear transformation from the image to measurements. In contrast, post-log domain methods have fast convergence speed but the resulting image quality is suboptimal for low dose CT data because the log transformation is extremely unreliable for low-count measurements and undefined for negative values. This paper proposes a hybrid method that integrates the pre-log model and post-log model together to overcome the disadvantages of individual pre-log and post-log methods. We divide a set of CT data into high-count and low-count regions. The post-log weighted least squares model is used for measurements in the high-count region and the pre-log shifted Poisson model for measurements in the low-count region. The hybrid likelihood function can be optimized using an existing iterative algorithm. Computer simulations and phantom experiments show that the proposed hybrid method can achieve faster early convergence than the pre-log shifted Poisson likelihood method and better signal-to-noise performance than the post-log weighted least squares method.
                機譯:隨著劑量在臨床應用中的不斷減少,用于低劑量計算機斷層掃描(CT)的斷層圖像重建越來越具有挑戰性。對數域前方法和對數后域方法已分別提出,每種方法都有其自身的缺點。對數域方法雖然有可能通過使用精確的成像模型來改善低劑量數據的圖像質量,但由于從圖像到測量值的非線性轉換,因此在實踐中會遇到收斂緩慢的問題。相比之下,對數后域方法收斂速度快,但是對于低劑量CT數據,所得圖像質量次優,因為對數轉換對于低計數測量極其不可靠,而對于負值則不確定。本文提出了一種將前測井模型和后測井模型集成在一起的混合方法,以克服單獨的前測井和后測井方法的缺點。我們將一組CT數據分為高計數區和低計數區。對數后加權最小二乘模型用于高計數區域的測量,對數前移位的泊松模型用于低計數區域的測量。可以使用現有的迭代算法優化混合似然函數。計算機仿真和幻像實驗表明,所提出的混合方法比對數后移位的泊松似然方法能夠更快地實現早期收斂,并且比對數后加權最小二乘方法具有更好的信噪性能。

                著錄項

                相似文獻

                • 外文文獻
                • 中文文獻
                • 專利
                站內服務
                • 寫作輔導
                • 期刊發表
                獲取原文

                客服郵箱:kefu@zhangqiaokeyan.com

                京公網安備:11010802029741號 ICP備案號:京ICP備15016152號-6 六維聯合信息科技 (北京) 有限公司?版權所有
                • 客服微信

                • 服務號

                古代妓院做爰片120分钟_婷婷五月综合缴情在线视频_国产在线视频一区二区天美蜜桃_日韩欧精品无码视频无删节 无码人妻一区二区久久_国产成人精品亚洲线观看_欧美熟妇呻吟猛交XX性_东北露脸46熟妇ⅩⅩXX 国产FREEXXXX性播放麻豆_久久精品亚洲乱码伦伦中文_日日摸天天添天天添无码国产_丰满又大又圆美乳 在教室里把跳D开到最大_被征服到高潮的娇妻精品小说_无码少妇一区二区三区浪潮AV_米地被老头添的好爽 妇荡岳丰满少妇岳_国产精品久久久久久无码专区_人妻无码中文字幕免费视频蜜桃_嗯啊小SAO货奶头好硬男男 疯狂做受XXXX高潮中国_艳阳门无删照片1400还有视频_9久久人妻无码精品系列_国产麻传媒精品国产AV 国产精品亚洲专区无码唯爱网_国语对白国产成人AⅤ片_熟女俱乐部五十路六十路AV_亚洲R成人AV久久人人爽