• <track id="lqepq"><em id="lqepq"></em></track>

  • 
    

      1. 
        

            <optgroup id="lqepq"><li id="lqepq"></li></optgroup>
            <optgroup id="lqepq"></optgroup>

          1. <cite id="lqepq"></cite>

            1. <optgroup id="lqepq"><li id="lqepq"></li></optgroup>
            2. <acronym id="lqepq"></acronym>
              1. 首頁> 外文學位 >文獻詳情
                【24h】

                Modeling time-varying networks with applications to neural flow and genetic regulation.

                機譯:建模時變網絡,并將其應用于神經流和遺傳調控。

                獲取原文
                獲取原文并翻譯 | 示例

                摘要

                Many biological processes are effectively modeled as networks, but a frequent assumption is that these networks do not change during data collection. However, that assumption does not hold for many phenomena, such as neural growth during learning or changes in genetic regulation during cell differentiation. Approaches are needed that explicitly model networks as they change in time and that characterize the nature of those changes.;In this work, we develop a new class of graphical models in which the conditional dependence structure of the underlying data-generation process is permitted to change over time. We first present the model, explain how to derive it from Bayesian networks, and develop an efficient MCMC sampling algorithm that easily generalizes under varying levels of uncertainty about the data generation process. We then characterize the nature of evolving networks in several biological datasets.;We initially focus on learning how neural information flow networks change in songbirds with implanted electrodes. We characterize how they change in response to different sound stimuli and during the process of habituation. We continue to explore the neurobiology of songbirds by identifying changes in neural information flow in another habituation experiment using fMRI data. Finally, we briefly examine evolving genetic regulatory networks involved in Drosophila muscle differentiation during development.;We conclude by describing experimental methods for testing some of our results and suggesting new experimental directions and statistical extensions to the model for predicting novel neural flow results.
                機譯:許多生物過程被有效地建模為網絡,但是經常假設這些網絡在數據收集過程中不會改變。但是,該假設不適用于許多現象,例如學習過程中的神經生長或細胞分化過程中遺傳調控的變化。需要一些方法來對網絡隨時間的變化進行顯式建模,并表征這些變化的性質。在這項工作中,我們開發了一類新的圖形模型,其中允許基礎數據生成過程的條件依存結構用于隨著時間的推移而變化。我們首先介紹該模型,解釋如何從貝葉斯網絡中導出該模型,并開發一種有效的MCMC采樣算法,該算法可以輕松地在數據生成過程的各種不確定性水平下進行概括。然后,我們在幾個生物學數據集中描述了進化網絡的性質。我們最初專注于學習神經信息流網絡如何在植入電極的鳴禽中發生變化。我們描述了它們如何響應于不同的聲音刺激以及在習慣化過程中發生變化。我們通過使用fMRI數據在另一個習慣化實驗中識別神經信息流的變化,繼續探索鳴禽的神經生物學。最后,我們簡要地檢查了發育過程中與果蠅肌肉分化有關的不斷發展的遺傳調控網絡。最后,我們描述了用于測試某些結果的實驗??方法,并提出了預測新神經流結果的模型的新實驗方向和統計擴展。

                著錄項

                • 作者

                  Robinson, Joshua Westly.;

                • 作者單位

                  Duke University.;

                • 授予單位 Duke University.;
                • 學科 Biology Neuroscience.;Computer Science.
                • 學位 Ph.D.
                • 年度 2010
                • 頁碼 199 p.
                • 總頁數 199
                • 原文格式 PDF
                • 正文語種 eng
                • 中圖分類
                • 關鍵詞

                • 入庫時間 2022-08-17 11:36:57

                相似文獻

                • 外文文獻
                • 中文文獻
                • 專利
                站內服務
                • 寫作輔導
                • 期刊發表
                獲取原文

                客服郵箱:kefu@zhangqiaokeyan.com

                京公網安備:11010802029741號 ICP備案號:京ICP備15016152號-6 六維聯合信息科技 (北京) 有限公司?版權所有
                • 客服微信

                • 服務號

                古代妓院做爰片120分钟_婷婷五月综合缴情在线视频_国产在线视频一区二区天美蜜桃_日韩欧精品无码视频无删节 无码人妻一区二区久久_国产成人精品亚洲线观看_欧美熟妇呻吟猛交XX性_东北露脸46熟妇ⅩⅩXX 国产FREEXXXX性播放麻豆_久久精品亚洲乱码伦伦中文_日日摸天天添天天添无码国产_丰满又大又圆美乳 在教室里把跳D开到最大_被征服到高潮的娇妻精品小说_无码少妇一区二区三区浪潮AV_米地被老头添的好爽 妇荡岳丰满少妇岳_国产精品久久久久久无码专区_人妻无码中文字幕免费视频蜜桃_嗯啊小SAO货奶头好硬男男 疯狂做受XXXX高潮中国_艳阳门无删照片1400还有视频_9久久人妻无码精品系列_国产麻传媒精品国产AV 国产精品亚洲专区无码唯爱网_国语对白国产成人AⅤ片_熟女俱乐部五十路六十路AV_亚洲R成人AV久久人人爽